南通龙门吊检测报告 超声波探伤第三方检测 吊钩检测报告
油罐定义:
储油罐是储存油品的容器,它是石油库的主要设备,目前常见的储油罐主要是立式圆柱形罐。
油罐分类:
由于储存介质的不同,储油罐的形式也是多种多样的。
按位置分类:可分为地上储油罐、地下储油罐、半地下储油罐、海上储油罐、海底储油罐等。
按油品分类:可分为原油储油罐、燃油储油罐、润滑油罐、食用油罐、消防水罐等。
按用途分类:可分为生产油罐、存储油罐等。
按形式分类:可分为立式储油罐、卧式储油罐等。
按结构分类:可分为固定顶储油罐、浮顶储油罐、球形储油罐等。
按大小分类:100m3以上为大型储油罐,多为立式储油罐;100m3以下的为小型储油罐,多为卧式储油罐。
无损探伤检测目的:改进制造工艺、保证设备的安全运行、降低制造成本、提高产品的可能性
探伤方法包括:射线探伤,超声波探伤,渗透探伤,涡流探伤,磁粉探伤等。
,龙门吊超声波探伤报告。

铁水包探伤检测项目围绕高温承载安全设计,聚焦耳轴、壳体、焊缝三大核心部件,覆盖内部缺陷、表面 / 近表面缺陷及结构完整性,结合其 “频繁热循环 + 重载受力” 的工况,确保无风险盲区。
你关注铁水包探伤项目很关键,这类设备一旦因缺陷失效,可能引发铁水泄漏等重大事故,检测项目的针对性直接决定安全保障效果。
一、核心部件专项检测项目
铁水包不同部件的缺陷风险差异大,需按部件制定专项检测内容,匹配检测方法。
1. 耳轴及连接结构检测(风险部件)
耳轴承担铁水包整体重量,是断裂风险的部位,需重点排查裂纹、磨损及焊缝缺陷,核心用UT+MT组合检测。
耳轴本体检测:
内部缺陷:用 UT 检测耳轴内部,排查锻造遗留的内部裂纹、夹杂,重点检测耳轴根部(应力集中区),需用聚焦确保无检测盲区。
磨损检测:用 UT 测厚仪或专用量具测量耳轴直径,若磨损量超过设计值的 5%,需评估承载能力(磨损会减小受力面积,导致局部应力升高)。
耳轴连接焊缝检测:
表面缺陷:用 MT 检测焊缝表面及热影响区,排查频繁起吊导致的疲劳裂纹(应力循环易使焊缝产生线性裂纹)。
内部缺陷:用 UT 检测焊缝内部,排查未熔合、未焊透(避免受力时焊缝开裂,导致耳轴与壳体分离)。
2. 壳体检测(高温承载主体)
壳体长期接触 1300℃以上铁水,易出现氧化减薄、内部缩松及表面热疲劳裂纹,核心用UT+MT/PT检测。
壳体母材检测:
内部缺陷:用 UT 对壳体进行 扫查,重点是底部和侧壁下半部分(铁水长期浸泡区),排查铸造缩孔、缩松及使用中扩展的内部裂纹。
壁厚检测:用 UT 测厚仪按网格点(间距≤300mm)测量壁厚,计算减薄量,若超过设计壁厚的 10%,需进行强度校核(氧化和铁水冲刷会导致壁厚逐年减薄)。
壳体表面检测:
用 MT 检测壳体外表面,排查热疲劳裂纹(频繁加热 - 冷却易形成网状或线性表面裂纹)。
用 PT 检测壳体内表面(接触铁水侧),排查铁水残渣腐蚀形成的开口缺陷(如腐蚀坑、微小裂纹)。
3. 壳体焊缝检测(结构连接薄弱点)
壳体环缝、纵缝及接管焊缝是应力集中区,易出现焊接缺陷和使用中裂纹,核心用UT+MT+RT(抽检) 组合检测。
环缝 / 纵缝检测:
内部缺陷:用 UT 检测焊缝内部,排查未熔合、夹渣、内部裂纹;抽检 20% 焊缝用 RT 验证,直观确认缺陷形态(如气孔的分布、未焊透的深度)。
表面缺陷:用 MT 检测焊缝表面及热影响区,排查表面裂纹、咬边(焊接时表面未熔合形成的开口缺陷)。
接管焊缝检测:
用 MT 检测透气孔、出钢口等接管的角焊缝表面,排查应力腐蚀裂纹(接管与壳体壁厚差异大,热膨胀不一致导致应力集中)。
用 UT 检测接管焊缝熔深,确保熔深达到设计要求(避免铁水从焊缝间隙渗漏)。
,南通龙门吊超声波探伤。

根据《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345-89规定,超声波检验等级分为A、B、C三个级别:
检验采用一种角度的在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测。一般不要求作横向缺陷的检验。母材厚度〉50mm时,不得采用检验。
B级检验原则上采用一种角度在焊缝的单面双侧进行检验,对整个焊缝截面进行探测。母材厚度〉100mm时,采用双面双侧检验。受几何条件的限制可在焊缝的双面单侧采用两种角度进行探伤。条件允许时应作横向缺陷的检验。
C级检验至少要采用两种角度在焊缝的单面双侧进行检验。要做两个扫查方向和两种角度的横向缺陷检验。母材厚度〉100mm时,采用双面双侧检验。
其他附加要求是:
1.对接焊缝余高要磨平,以便在焊缝上作平行扫查;
2.焊缝两侧斜扫查经过的母材部分要用直作检查;
3.焊缝母材厚度≥100mm,窄间隙焊缝母材厚度≥40mm时,一般要增加串列式扫查。